Страница:
<< 68 69 70 71 72 73
74 >> [Всего задач: 367]
|
|
Сложность: 3+ Классы: 7,8,9
|
В таблицу 2006×2006 вписаны числа 1, 2, 3, ..., 2006².
Докажите, что найдутся такие два числа в клетках с общей стороной или вершиной, что их сумма кратна 4.
|
|
Сложность: 4- Классы: 10,11
|
Грани икосаэдра окрасили в пять цветов (среди которых есть красный и синий) так, что две грани, окрашенные в один цвет, не имеют общих точек, даже вершин. Докажите, что для любой точки внутри икосаэдра сумма расстояний от нее до красных граней равна сумме расстояний до синих граней.
|
|
Сложность: 4- Классы: 7,8,9,10
|
В классе 16 учеников. Каждый месяц учитель делит класс на две группы.
Какое наименьшее количество месяцев должно пройти, чтобы каждые два ученика в какой-то из месяцев оказались в разных группах?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Коля Васин задумал написать программу, которая дала бы возможность компьютеру печатать одну за другой цифры десятичной записи числа . Докажите, что даже если бы машина не ломалась, то Колина затея все равно бы не удалась, и рано или поздно компьютер напечатал бы неверную цифру.
|
|
Сложность: 5 Классы: 10,11
|
По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо
каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.
Страница:
<< 68 69 70 71 72 73
74 >> [Всего задач: 367]