ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В тетраэдре $ABCD$ скрещивающиеся рёбра попарно равны. Через середину отрезка $AH_A$, где $H_A$ – точка пересечения высот грани $BCD$, провели прямую $h_A$ перпендикулярно плоскости $BCD$. Аналогичным образом определили точки $H_B$, $H_C$, $H_D$ и построили прямые $h_B$, $h_C$, $h_D$ соответственно для трёх других граней тетраэдра. Докажите, что прямые $h_A$, $h_B$, $h_C$, $h_D$ пересекаются в одной точке. Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]
Радиусы описанной и вписанной окружностей треугольника ABC равны R и r; O, I – центры этих окружностей. Внешняя биссектриса угла C пересекает прямую AB в точке P. Точка Q – проекция точки P на прямую OI. Найдите расстояние OQ.
Пусть MA, MB, MC – середины сторон неравнобедренного треугольника ABC, точки HA, HB, HC, отличные от MA, MB, MC, лежащие на соответствующих сторонах, таковы, что MAHB = MAHC, MBHA = MBHC, MCHA = MCHB. Докажите, что HA, HB, HC – основания высот треугольника ABC.
Через вершины треугольника ABC проводятся три произвольные параллельные прямые da, db, dc. Прямые, симметричные da, db, dc относительно BC, CA, AB соответственно, образуют треугольник XYZ. Найдите геометрическое место центров вписанных окружностей таких треугольников.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|