ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Как изменится ответ, если радиус этой монеты в ![]() |
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 508]
Дано целое число n > 1. Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по n точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?
Противоположные стороны выпуклого шестиугольника параллельны. Hазовём высотой такого шестиугольника отрезок с концами на прямых, содержащих противолежащие стороны и перпендикулярный им. Докажите, что вокруг этого шестиугольника можно описать окружность тогда и только тогда, когда его высоты можно параллельно перенести так, чтобы они образовали треугольник.
Дан лист клетчатой бумаги. Докажите, что при n ≠ 4 не существует правильного n-угольника с вершинами в узлах решетки.
Как изменится ответ, если радиус этой монеты в
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 508] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |