ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника.

   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 507]      



Задача 115880

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Ортогональная проекция (прочее) ]
[ Решение задач при помощи аффинных преобразований ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10,11

Верно ли, что при любом n правильный 2n-угольник является проекцией некоторого многогранника, имеющего не более, чем  n + 2  грани?

Прислать комментарий     Решение

Задача 116569

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Правильные многоугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

Вася нарисовал на плоскости несколько окружностей и провёл всевозможные общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?

Прислать комментарий     Решение

Задача 116777

Темы:   [ Теория игр (прочее) ]
[ Правильные многоугольники ]
Сложность: 4+
Классы: 10,11

Автор: Ивлев Ф.

На окружности отмечено 2n + 1  точек, делящих её на равные дуги  (n ≥ 2).  Двое по очереди стирают по одной точке. Если после хода игрока все треугольники с вершинами в ещё отмеченных точках – тупоугольные, он выигрывает, и игра заканчивается. Кто выиграет при правильной игре: начинающий игру или его противник?

Прислать комментарий     Решение

Задача 58085

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Вписанные и описанные многоугольники ]
[ Покрытия ]
Сложность: 4+
Классы: 8,9,10

В квадрате со стороной 1 находится 51 точка. Докажите, что какие-то три из них можно накрыть кругом радиуса 1/7.
Прислать комментарий     Решение


Задача 76553

Темы:   [ Выпуклые многоугольники ]
[ Пятиугольники ]
Сложность: 4+
Классы: 10,11

Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника.
Прислать комментарий     Решение


Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .