ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В классе 16 учеников. Каждый месяц учитель делит класс на две группы.
Какое наименьшее количество месяцев должно пройти, чтобы каждые два ученика в какой-то из месяцев оказались в разных группах?

Вниз   Решение


Коля Васин задумал написать программу, которая дала бы возможность компьютеру печатать одну за другой цифры десятичной записи числа . Докажите, что даже если бы машина не ломалась, то Колина затея все равно бы не удалась, и рано или поздно компьютер напечатал бы неверную цифру.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность. Перпендикуляр, опущенный из вершины C на биссектрису угла ABD, пересекает прямую AB в точке C1; перпендикуляр, опущенный из вершины B на биссектрису угла ACD, пересекает прямую CD в точке B1. Докажите, что  B1C1 || AD.

ВверхВниз   Решение


Клетки таблицы 100×100 окрашены в 4 цвета так, что в каждой строке и в каждом столбце ровно по 25 клеток каждого цвета.
Докажите, что найдутся две строки и два столбца, все четыре клетки на пересечении которых окрашены в разные цвета.

ВверхВниз   Решение


В прямоугольную таблицу из m строк и n столбцов записаны mn положительных чисел. Найдём в каждом столбце произведение чисел и сложим все n таких произведений. Докажите, что если переставить числа в каждой строке в порядке возрастания, то сумма аналогичных произведений будет не меньше, чем в первоначальной. Решите эту задачу для
  а)  m = n = 2;
  б)  m = 2  и произвольного n;
  в) любых натуральных m и n.

ВверхВниз   Решение


Через точку внутри вписанного четырёхугольника провели две прямые, делящие его на четыре части. Три из этих частей – вписанные четырёхугольники, причем радиусы описанных вокруг них окружностей равны. Докажите, что четвёртая часть – четырёхугольник, вписанный в окружность того же радиуса.

Вверх   Решение

Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 508]      



Задача 111916

Темы:   [ Теория игр (прочее) ]
[ Правильные многоугольники ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 9,10,11

Дано целое число  n > 1.  Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по n точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?

Прислать комментарий     Решение

Задача 116135

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 8,9

Противоположные стороны выпуклого шестиугольника параллельны. Hазовём высотой такого шестиугольника отрезок с концами на прямых, содержащих противолежащие стороны и перпендикулярный им. Докажите, что вокруг этого шестиугольника можно описать окружность тогда и только тогда, когда его высоты можно параллельно перенести так, чтобы они образовали треугольник.

Прислать комментарий     Решение

Задача 60868

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Правильные многоугольники ]
[ Метод спуска ]
[ Доказательство от противного ]
[ Рациональные и иррациональные числа ]
[ Целочисленные и целозначные многочлены ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 5
Классы: 9,10,11

Дан лист клетчатой бумаги. Докажите, что при  n ≠ 4  не существует правильного n-угольника с вершинами в узлах решетки.

Прислать комментарий     Решение

Задача 73564

Темы:   [ Центральный угол. Длина дуги и длина окружности ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Композиции поворотов ]
[ Обратные тригонометрические функции ]
Сложность: 5
Классы: 9,10,11

n одинаковых монет лежат на столе, образуя замкнутую цепочку. Центры монет образуют выпуклый многоугольник. Сколько оборотов сделает монета такого же размера за время, пока она один раз прокатится по внешней стороне всей цепочки, как показано на рисунке?

Как изменится ответ, если радиус этой монеты в k раз больше радиуса каждой из монет цепочки?
Прислать комментарий     Решение


Задача 56729

 [Теорема Брианшона]
Темы:   [ Радикальная ось ]
[ Вписанные и описанные многоугольники ]
[ Шестиугольники ]
Сложность: 6
Классы: 8,9,10

Докажите, что диагонали AD, BE и CF описанного шестиугольника ABCDEF пересекаются в одной точке (Брианшон).
Прислать комментарий     Решение


Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 508]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .