ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что у выпуклого 10n-гранника найдётся n граней с одинаковым числом сторон. ![]() ![]() Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов. ![]() ![]() ![]() На арене круглого цирка радиуса 10 метров бегает лев. Двигаясь по ломаной
линии, он пробежал 30 километров. ![]() ![]() ![]() Развертка боковой поверхности цилиндра есть квадрат со стороной 2 ![]() ![]() ![]() В пространстве даны точка O и n попарно непараллельных прямых. Точка O ортогонально проектируется на все данные прямые. Каждая из получившихся точек снова проектируется на все данные прямые и т.д. Существует ли шар, содержащий все точки, которые могут быть получены таким образом? ![]() ![]() |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 56]
Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём 2∠MON = ∠AOC. Докажите, что периметр треугольника MBN не меньше стороны AC.
На окружности радиуса 1 отмечено 100 точек.
Дана треугольная пирамида ABCD. В ней R – радиус описанной сферы, r – радиус вписанной сферы, a – длина наибольшего ребра, h – длина наименьшей высоты (на какую-то грань). Докажите, что R/r > a/h.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 56] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |