ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что у выпуклого 10n-гранника найдётся n граней с одинаковым числом сторон.

Вниз   Решение


Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.

ВверхВниз   Решение


На арене круглого цирка радиуса 10 метров бегает лев. Двигаясь по ломаной линии, он пробежал 30 километров.
Доказать, что сумма всех углов, на которые лев поворачивал, не меньше 2998 радиан.

ВверхВниз   Решение


Развертка боковой поверхности цилиндра есть квадрат со стороной 2 . Найдите объём цилиндра.

ВверхВниз   Решение


В пространстве даны точка O и n попарно непараллельных прямых. Точка O ортогонально проектируется на все данные прямые. Каждая из получившихся точек снова проектируется на все данные прямые и т.д. Существует ли шар, содержащий все точки, которые могут быть получены таким образом?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 56]      



Задача 102285

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 8,9

Дан параллелограмм KLMN, у которого KL = 8, KN = 3$ \sqrt{2}$ + $ \sqrt{6}$ и $ \angle$LKN = 45o. На стороне KL взята такая точка A, что KA : AL = 3 : 1. Через точку A параллельно LM проведена прямая, на которой внутри параллелограмма выбрана точка B, а на стороне KN выбрана точка C так, что KC = AB. Прямые LC и MB пересекаются в точке D. Найдите угол LAD.
Прислать комментарий     Решение


Задача 108136

Темы:   [ Поворот помогает решить задачу ]
[ Длины и периметры (геометрические неравенства) ]
[ Вспомогательные равные треугольники ]
[ Неравенство треугольника (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 8,9

Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём  2∠MON = ∠AOC.  Докажите, что периметр треугольника MBN не меньше стороны AC.

Прислать комментарий     Решение

Задача 78802

Темы:   [ Ортогональная проекция (прочее) ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 5-
Классы: 10,11

В пространстве даны точка O и n попарно непараллельных прямых. Точка O ортогонально проектируется на все данные прямые. Каждая из получившихся точек снова проектируется на все данные прямые и т.д. Существует ли шар, содержащий все точки, которые могут быть получены таким образом?
Прислать комментарий     Решение


Задача 35507

Темы:   [ Неравенство треугольника (прочее) ]
[ Системы точек ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 3
Классы: 8,9

На окружности радиуса 1 отмечено 100 точек.
Докажите, что на окружности найдётся точка, сумма расстояний от которой до всех отмеченных точек будет не меньше 100.

Прислать комментарий     Решение

Задача 98620

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Сфера, описанная около тетраэдра ]
[ Геометрические неравенства (прочее) ]
Сложность: 3+
Классы: 10,11

Дана треугольная пирамида ABCD. В ней R – радиус описанной сферы, r – радиус вписанной сферы, a – длина наибольшего ребра, h – длина наименьшей высоты (на какую-то грань). Докажите, что  R/r > a/h.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .