Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 98]
Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений ax11 + bx4 + c = 0, bx11 + cx4 + a = 0, cx11 + ax4 + b = 0 имеют общий корень. Докажите, что все три уравнения имеют общий корень.
|
|
Сложность: 4+ Классы: 9,10,11
|
На окружности сидят 12 кузнечиков в различных точках. Эти точки делят окружность на 12 дуг. Отметим 12 середин дуг. По сигналу кузнечики одновременно прыгают, каждый – в ближайшую по часовой стрелке отмеченную точку. Снова образуются 12 дуг, прыжки в середины дуг повторяются, и т. д. Может ли хотя бы один кузнечик вернуться в свою исходную точку после того, как им сделано a) 12 прыжков; б) 13 прыжков?
|
|
Сложность: 4+ Классы: 10,11
|
F(x) – возрастающая функция, определённая на отрезке [0, 1]. Известно, что область её значений принадлежит отрезку [0, 1]. Доказать, что, каково бы ни было натуральное n, график функции можно покрыть N прямоугольниками, стороны которых параллельны осям координат так, что площадь каждого равна 1/n². (В прямоугольник мы включаем его внутренние точки и точки его границы.)
|
|
Сложность: 5- Классы: 10,11
|
Аладдин побывал во всех точках экватора, двигаясь то на восток, то на запад,
а иногда мгновенно перемещаясь в диаметрально противоположную точку Земли.
Докажите, что был отрезок времени, за которое разность расстояний, пройденных
Аладдином на восток и на запад, не меньше половины длины экватора.
|
|
Сложность: 5- Классы: 10,11
|
Докажите, что если α < 0 < β, то
Sα(x) ≤ S0(x) ≤ Sβ(x), причём
Определение средних степенных Sα(x) можно посмотреть в справочнике.
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 98]