Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 98]
Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC.
а) Докажите, что площадь треугольника A'B'C' не больше половины площади треугольника ABC.
б) Докажите, что площадь треугольника A'B'C' равна четверти
площади треугольника ABC тогда и только тогда, когда хотя бы одна из точек
A', C' совпадает с серединой соответствующей стороны.
|
|
Сложность: 3+ Классы: 10,11
|
Пусть x, y, z – любые числа из интервала (0, π/2). Докажите неравенство
|
|
Сложность: 4- Классы: 10,11
|
Целые ненулевые числа a1, a2, ..., an таковы, что равенство
выполнено при всех целых значениях
x, входящих в область определения дроби, стоящей в левой части.
a) Докажите, что число
n чётно.
б) При каком наименьшем
n такие числа существуют?
|
|
Сложность: 4- Классы: 9,10,11
|
Дан многочлен P(x) степени 2003 с действительными
коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная
последовательность целых чисел a1, a2, ..., такая, что P(a1) = 0,
P(a2) = a1, P(a3) = a2 и т. д. Докажите, что не все
числа в последовательности a1, a2, ... различны.
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что если положительная квадратичная иррациональность α = разлагается в чисто периодическую цепную дробь, то сопряженная ей квадратичная иррациональность α' = принадлежит интервалу (– 1, 0).
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 98]