ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В наборе имеются гири массой 1 г, 2 г, 4 г, ... (все степени числа 2), причём среди гирь могут быть одинаковые. На две чашки весов положили гири так, чтобы наступило равновесие. Известно, что на левой чашке все гири различны. Докажите, что на правой чашке не меньше гирь, чем на левой. Решение |
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 288]
Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?
В наборе имеются гири массой 1 г, 2 г, 4 г, ... (все степени числа 2), причём среди гирь могут быть одинаковые. На две чашки весов положили гири так, чтобы наступило равновесие. Известно, что на левой чашке все гири различны. Докажите, что на правой чашке не меньше гирь, чем на левой.
Дан выпуклый восьмиугольник ABCDEFGH, у которого все внутренние углы равны между собой, а стороны равны через одну – AB = CD = EF = GH,
В таблице n×n разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.)
На отрезке [a, b] отмечено несколько синих и красных точек. Две точки одного цвета, между которыми нет отмеченных точек, разрешается стереть. Разрешается также отметить две точки одного цвета, красные или синие, так, чтобы между ними не было других отмеченных точек. Первоначально было отмечено две точки: a – синяя и b – красная. Можно ли сделать несколько разрешенных пребразований так, чтобы в результате было опять две отмеченные точки: a – красная и b – синяя?
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 288] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|