Страница:
<< 3 4 5 6 7
8 9 >> [Всего задач: 44]
|
|
Сложность: 4 Классы: 10,11
|
Пусть I – центр сферы, вписанной в тетраэдр ABCD, A', B', C', D' – центры описанных сфер тетраэдров IBCD, ICDA, IDBA, IABC соответственно.
Докажите, что описанная сфера тетраэдра ABCD целиком лежит внутри описанной сферы тетраэдра A'B'C'D'.
|
|
Сложность: 4 Классы: 10,11
|
В тетраэдре
ABCD двугранные углы при рёбрах
AB ,
BC и
CD – прямые,
ABC = BCD = α . Радиус
сферы, описанной около тетраэдра, равен
R . Найдите объём
тетраэдра.
|
|
Сложность: 4+ Классы: 10,11
|
Пусть $I$ – центр сферы, вписанной в тетраэдр $ABCD$, а $J$ – центр сферы, касающейся грани $BCD$ и плоскостей остальных граней (вне самих граней). Отрезок $IJ$ пересекает сферу, описанную около тетраэдра, в точке $K$. Что больше: $IK$ или $JK$?
|
|
Сложность: 5 Классы: 10,11
|
Сфера с центром в плоскости основания
ABC тетраэдра
SABC проходит
через вершины
A ,
B и
C и вторично пересекает ребра
SA ,
SB и
SC
в точках
A1
,
B1
и
C1
соответственно. Плоскости, касающиеся
сферы в точках
A1
,
B1
и
C1
, пересекаются в точке
O .
Докажите, что
O – центр сферы, описанной около тетраэдра
SA1
B1
C1
.
|
|
Сложность: 6+ Классы: 10,11
|
Дан тетраэдр $ABCD$. Прямая $\ell$ пересекает плоскости $ABC$, $BCD$, $CDA$, $DAB$ в точках $D_0$, $A_0$, $B_0$, $C_0$ соответственно. Пусть $P$ – произвольная точка, не лежащая на прямой $\ell$ и в плоскостях граней тетраэдра, а $A_1$, $B_1$, $C_1$, $D_1$ – вторые точки пересечения прямых $PA_0$, $PB_0$, $PC_0$, $PD_0$ со сферами $PBCD$, $PCDA$, $PDAB$, $PABC$ соответственно. Докажите, что $P$, $A_1$, $B_1$, $C_1$, $D_1$ лежат на одной окружности.
Страница:
<< 3 4 5 6 7
8 9 >> [Всего задач: 44]