ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Анджанс А.

Числовая последовательность определяется условиями:  
Сколько полных квадратов встречается среди первых членов этой последовательности, не превосходящих 1000000?

   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 629]      



Задача 65599

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 5,6,7

Аня захотела вписать в каждую клетку таблицы 5×8 по одной цифре таким образом, чтобы каждая цифра встречалась ровно в четырёх рядах. (Рядами мы считаем как столбцы, так и строчки таблицы.) Докажите, что у неё ничего не получится.

Прислать комментарий     Решение

Задача 65822

Темы:   [ Шахматная раскраска ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10,11

На плоскости лежал куб. Его перекатили несколько раз (через рёбра) так, что куб снова оказался на исходном месте той же гранью вверх.
Могла ли при этом верхняя грань повернуться на 90° относительно своего начального положения?

Прислать комментарий     Решение

Задача 65842

Темы:   [ Счетные и несчетные подмножества ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Найдутся ли такие функции p(x) и q(x), что p(x) – чётная функция, а p(q(x)) – нечётная функция (отличная от тождественно нулевой)?

Прислать комментарий     Решение

Задача 65947

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Найдите наименьшее простое число, которое можно представить в виде суммы пяти различных простых чисел.

Прислать комментарий     Решение

Задача 65964

Темы:   [ Признаки делимости на 3 и 9 ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 9,10

Дано 100 целых чисел. Из первого числа вычли сумму цифр второго числа, из второго вычли сумму цифр третьего числа, и так далее, наконец, из 100-го числа вычли сумму цифр первого числа. Могут ли эти разности оказаться соответственно равными 1, 2, ..., 100 в каком-то порядке?

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .