Страница:
<< 3 4 5 6 7 8
9 >> [Всего задач: 42]
|
|
Сложность: 3 Классы: 8,9,10
|
Решите систему уравнений:
(x3 + x4 + x5)5 = 3x1,
(x4 + x5 + x1)5 = 3x2,
(x5 + x1 + x2)5 = 3x3,
(x1 + x2 + x3)5 = 3x4,
(x2 + x3 + x4)5 = 3x5.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Можно ли:
а) нагрузить две монеты так, чтобы вероятности выпадения "орла" и "решки" были разные, а вероятности выпадения любой из комбинаций "решка, решка", "орел, решка", "орел, орел" были бы одинаковы?
б) нагрузить две кости так, чтобы вероятность выпадения любой суммы от 2 до 12 была одинаковой?
|
|
Сложность: 4 Классы: 9,10,11
|
На 2016 красных и 2016 синих карточках написаны положительные числа, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то 64 чисел, а на карточках другого цвета – попарные произведения тех же 64 чисел. Всегда ли можно определить, на карточках какого цвета написаны попарные суммы?
|
|
Сложность: 5 Классы: 9,10,11
|
Найдите все положительные числа x1, x2, ..., x10, удовлетворяющие при всех k = 1, 2,..., 10 условию (x1 + ... + xk)(xk + ... + x10) = 1.
|
|
Сложность: 3+ Классы: 9,10
|
Составить две прогрессии: арифметическую и геометрическую, каждую из
четырёх членов; при этом, если сложить одноимённые члены обеих прогрессий, то
должны получиться числа: 27, 27, 39, 87.
Страница:
<< 3 4 5 6 7 8
9 >> [Всего задач: 42]