ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Саша выписала числа от одного до ста, а Миша часть из них стер. Среди оставшихся у 20 чисел есть в записи единица, у 19 чисел есть в записи двойка, а у 30 чисел нет ни единицы, ни двойки. Сколько чисел стер Миша?

Вниз   Решение


Использовав каждую из цифр от 0 до 9 ровно по разу, запишите 5 ненулевых чисел так, чтобы каждое делилось на предыдущее.

ВверхВниз   Решение


В треугольнике $ABC$ $O$ – центр описанной окружности, $H$ – ортоцентр, $M$ – середина $AB$. Прямая $MH$ пересекает прямую, проходящую через $O$ и параллельную $AB$, в точке $K$, лежащей на описанной окружности треугольника. Точка $P$ – проекция $K$ на $AC$. Докажите, что $PH\parallel BC$.

Вверх   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 501]      



Задача 53493

Темы:   [ Признаки и свойства параллелограмма ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Точки пересечения биссектрис внутренних углов параллелограмма являются вершинами некоторого четырёхугольника. Докажите, что этот четырёхугольник — прямоугольник.

Прислать комментарий     Решение


Задача 54058

Темы:   [ Биссектриса угла (ГМТ) ]
[ Ромбы. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

Прислать комментарий     Решение

Задача 54059

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN.

Прислать комментарий     Решение

Задача 54506

Темы:   [ Геометрическое место точек, равноудаленных от данной прямой ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Докажите, что геометрическое место точек, удалённых на данное расстояние от данной прямой, есть две параллельные прямые.

Прислать комментарий     Решение


Задача 116881

Темы:   [ Параллелограмм Вариньона ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 10,11

Автор: Фольклор

Середины сторон выпуклого четырёхугольника являются вершинами квадрата. Обязательно ли исходный четырёхугольник является квадратом?

Прислать комментарий     Решение

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .