ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 507]      



Задача 115900

Темы:   [ Правильные многоугольники ]
[ Средняя линия треугольника ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Центральная симметрия помогает решить задачу ]
[ Три прямые, пересекающиеся в одной точке ]
[ Проективная геометрия (прочее) ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Белухов Н.

Дан правильный 17-угольник A1... A17. Докажите, что треугольники, образованные прямыми A1A4, A2A10, A13A14 и A2A3, A4A6, A14A15, равны.

Прислать комментарий     Решение

Задача 32091

Темы:   [ Пятиугольники ]
[ Неравенства с площадями ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перенос помогает решить задачу ]
[ Монотонность и ограниченность ]
Сложность: 5
Классы: 9,10,11

Дан выпуклый пятиугольник. Каждая диагональ отсекает от него треугольник. Докажите, что сумма площадей треугольников больше площади пятиугольника.

Прислать комментарий     Решение


Задача 57056

Темы:   [ Пятиугольники ]
[ Признаки и свойства параллелограмма ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5
Классы: 8,9,10

В равностороннем (неправильном) пятиугольнике ABCDE угол ABC вдвое больше угла DBE. Найдите величину угла ABC.
Прислать комментарий     Решение


Задача 57057

Тема:   [ Пятиугольники ]
Сложность: 5
Классы: 9

а) Диагонали AC и BE правильного пятиугольника ABCDE пересекаются в точке K. Докажите, что описанная окружность треугольника CKE касается прямой BC.
б) Пусть a — длина стороны правильного пятиугольника, d — длина его диагонали. Докажите, что  d2 = a2 + ad.
Прислать комментарий     Решение


Задача 57059

Темы:   [ Пятиугольники ]
[ Центральная симметрия помогает решить задачу ]
[ Диаметр, основные свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 5
Классы: 8,9,10

Правильный пятиугольник ABCDE со стороной a вписан в окружность S. Прямые, проходящие через его вершины перпендикулярно сторонам, образуют правильный пятиугольник со стороной b (см. рис.). Сторона правильного пятиугольника, описанного около окружности S, равна c. Докажите, что  a2 + b2 = c2.


Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .