ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 404]      



Задача 66676

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Радикальная ось ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 4
Классы: 8,9,10

Автор: Белухов Н.

Вершины треугольника $DEF$ лежат на разных сторонах треугольника $ABC$. Касательные, проведенные из центра вписанной в треугольник $DEF$ окружности к вневписанным окружностям треугольника $ABC$, равны. Докажите, что $4S_{DEF} \ge S_{ABC}$.
Прислать комментарий     Решение


Задача 109034

Темы:   [ Экстремальные точки треугольника ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Формулы для площади треугольника ]
[ Треугольник (построения) ]
Сложность: 4
Классы: 8,9,10

Даны три точки A,B,C . Где на прямой AC нужно выбрать точку M , чтобы сумма радиусов окружностей, описанных около треугольников ABM и CBM , была наименьшей?
Прислать комментарий     Решение


Задача 109518

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки подобия ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 4
Классы: 8,9,10

Верно ли, что любые два прямоугольника равной площади можно расположить на плоскости так, что любая горизонтальная прямая, пересекающая один из них, будет пересекать и второй, причём по отрезку той же длины?

Прислать комментарий     Решение

Задача 110473

Темы:   [ Площадь и ортогональная проекция ]
[ Сфера, вписанная в двугранный угол ]
[ Касающиеся сферы ]
[ Формула Герона ]
Сложность: 4
Классы: 10,11

Три шара радиусов 1, 2 и 5 расположены так, что каждый из них касается двух других шаров и двух данных плоскостей. Найдите расстояние между точками касания первого из этих шаров с плоскостями.
Прислать комментарий     Решение


Задача 110474

Темы:   [ Площадь и ортогональная проекция ]
[ Сфера, вписанная в двугранный угол ]
[ Касающиеся сферы ]
[ Формула Герона ]
Сложность: 4
Классы: 10,11

Три шара радиусов 1, 3 и 4 расположены так, что каждый из них касается двух других шаров и двух данных плоскостей. Найдите расстояние между точками касания первого из этих шаров с плоскостями.
Прислать комментарий     Решение


Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .