ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 404]      



Задача 52999

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанный угол равен половине центрального ]
[ Биссектриса угла (ГМТ) ]
[ Формула Герона ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол C – тупой; биссектриса BE угла B делит сторону AC на отрезки  AE = 3,  EC = 2.  Известно, что точка K, лежащая на продолжении стороны BC за вершину C, является центром окружности, проходящей через точки C, E и точку пересечения биссектрисы угла B с биссектрисой угла ACK.
Найдите расстояние от точки E до стороны AB.

Прислать комментарий     Решение

Задача 67050

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9,10,11

В прямоугольный треугольник с гипотенузой длины 1 вписали окружность. Через точки её касания с его катетами провели прямую.
Отрезок какой длины может высекать на этой прямой окружность, описанная около исходного треугольника?

Прислать комментарий     Решение

Задача 115733

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Выпуклые многоугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4-
Классы: 9,10

При каком наименьшем n существует выпуклый n-угольник, у которого синусы всех углов равны, а длины всех сторон различны?

Прислать комментарий     Решение

Задача 56790

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Вписанные и описанные многоугольники ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Периметр треугольника ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 9,10,11

Автор: Ионин Ю.И.

а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.
б) Докажите аналогичное утверждение для любого описанного многоугольника.

Прислать комментарий     Решение

Задача 64987

Темы:   [ Неравенства с биссектрисами ]
[ Неравенства для площади треугольника ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Применение тригонометрических формул (геометрия) ]
[ Неравенство Коши ]
Сложность: 4
Классы: 10,11

Автор: Рожкова М.

Докажите, что для любого неравнобедренного треугольника   ,   где l1, l2 – наибольшая и наименьшая биссектрисы треугольника, S – его площадь.

Прислать комментарий     Решение

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .