Страница:
<< 74 75 76 77
78 79 80 >> [Всего задач: 404]
|
|
Сложность: 4+ Классы: 8,9,10
|
Четырехугольник
ABCD описан около окружности.
Докажите, что радиус этой окружности меньше суммы радиусов
окружностей, вписанных в треугольники
ABC и
ACD .
|
|
Сложность: 4+ Классы: 9,10,11
|
В угол с вершиной $C$ вписана окружность $\omega$. Рассматриваются окружности, проходящие через $C$, касающиеся $\omega$ внешним образом и пересекающие стороны угла в точках $A$ и $B$. Докажите, что периметры всех треугольников $ABC$ равны.
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан выпуклый многоугольник и точка
O внутри него. Любая прямая, проходящая
через точку
O, делит площадь многоугольника пополам. Доказать, что
многоугольник центрально-симметричный и
O — центр симметрии.
|
|
Сложность: 4+ Классы: 8,9,10
|
Внутри выпуклого многоугольника
M помещена окружность максимально возможного
радиуса
R (это значит, что внутри
M нельзя поместить окружность большего
радиуса). Известно, что внутри можно провернуть отрезок длины 1 на любой угол
(т.е. мы можем двигать единичный отрезок как твердый стержень по плоскости так,
чтобы он не вылезал за пределы многоугольника
M и при этом повернулся на
любой заданный угол). Докажите, что
R![$ \ge$](show_document.php?id=1061739)
1/3.
|
|
Сложность: 5- Классы: 9,10,11
|
Дан произвольный треугольник
ABC и точка
X вне его.
AM,
BN,
CQ — медианы
треугольника
ABC. Доказать, что площадь одного из треугольников
XAM,
XBN,
XCQ
равна сумме площадей двух других.
Страница:
<< 74 75 76 77
78 79 80 >> [Всего задач: 404]