ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 404]      



Задача 110874

Темы:   [ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9

Один из углов треугольника равен , радиус вписанной окружности равен 1, а площадь треугольника равна 13 . Найдите радиус окружности, описанной около этого треугольника.
Прислать комментарий     Решение


Задача 111218

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Производная и экстремумы ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Формула Герона ]
Сложность: 4
Классы: 10,11

Основание пирамиды – квадрат. Высота пирамиды пересекает диагональ основания. Найдите наибольший объём такой пирамиды, если периметр диагонального сечения, содержащего высоту пирамиды, равен 5.
Прислать комментарий     Решение


Задача 111781

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Неравенства с площадями ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

У двух треугольников равны наибольшие стороны и равны наименьшие углы. Строится новый треугольник со сторонами, равными суммам соответствующих сторон данных треугольников (складываются наибольшие стороны двух треугольников, средние по длине стороны и наименьшие стороны). Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.
Прислать комментарий     Решение


Задача 79404

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Формула Герона ]
[ Площадь треугольника (через высоту и основание) ]
[ Целочисленные треугольники ]
Сложность: 4
Классы: 9,10

Радиус вписанной в треугольник окружности равен $ {\frac{4}{3}}$, а длины высот треугольника — целые числа, сумма которых равна 13. Вычислить длины сторон треугольника.
Прислать комментарий     Решение


Задача 53877

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема косинусов ]
[ Четырехугольник: вычисления, метрические соотношения. ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4+
Классы: 8,9

В трапеции основания равны a и b, диагонали перпендикулярны, а угол между боковыми сторонами равен $ \alpha$. Найдите площадь трапеции.

Прислать комментарий     Решение


Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .