Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 345]
|
|
Сложность: 4- Классы: 8,9,10
|
Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$.
Докажите, что отрезок $LJ$ перпендикулярен $AD$.
Дана окружность и две неравные параллельные хорды. Используя
только линейку, разделите эти хорды пополам.
Постройте треугольник по двум сторонам так, чтобы медиана, проведённая к третьей стороне, делила угол треугольника в отношении 1 : 2.
Дана прямая l и точки A и B по одну сторону от нее. Найдите на прямой l такую точку M, чтобы луч MA был биссектрисой угла между лучом MB и одним из лучей с вершиной M, принадлежащих данной прямой l.
С помощью циркуля и линейки постройте треугольник по данным
серединам двух его сторон и прямой, на которой лежит биссектриса,
проведённая к третьей стороне.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 345]