Страница:
<< 35 36 37 38 39
40 41 >> [Всего задач: 204]
На плоскости дано n > 4 точек, никакие три из которых не лежат на одной прямой.
Докажите, что существует не менее
различных выпуклых четырёхугольников с вершинами в этих точках.
Стороны выпуклого многоугольника, периметр которого равен 12, отодвигаются на
расстояние
d = 1 во внешнюю сторону. Доказать, что площадь многоугольника
увеличится по крайней мере на 15.
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что в выпуклый центрально-симметричный многоугольник можно
поместить ромб вдвое меньшей площади.
|
|
Сложность: 4+ Классы: 8,9,10
|
В данный треугольник поместить центрально-симметричный многоугольник
наибольшей площади.
|
|
Сложность: 5- Классы: 7,8,9
|
а) Из картона вырезали 7 выпуклых многоугольников и
положили на стол так, что любые 6 из них можно прибить к столу двумя
гвоздями, а все 7 нельзя. Приведите пример таких многоугольников и их
расположения. (Многоугольники могут перекрываться.)
б) Из картона вырезали 8 выпуклых многоугольников и положили на стол
так, что любые 7 из них можно прибить к столу двумя гвоздями, а
все 8 — нельзя. Приведите пример таких многоугольников и их
расположения. (Многоугольники могут перекрываться.)
Страница:
<< 35 36 37 38 39
40 41 >> [Всего задач: 204]