ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 204]      



Задача 88235

Темы:   [ Замощения костями домино и плитками ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 5,6,7,8

Квадратный лист бумаги разрезали на шесть кусков в форме выпуклых многоугольников; пять кусков затерялись, остался один кусок в форме правильного восьмиугольника (см. рисунок). Можно ли по одному этому восьмиугольнику восстановить исходный квадрат?

Прислать комментарий     Решение

Задача 35139

Темы:   [ Подсчет двумя способами ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 9,10,11

Какое наибольшее количество непересекающихся диагоналей можно провести в выпуклом n-угольнике (допускаются диагонали, имеющие общую вершину)?

Прислать комментарий     Решение

Задача 66894

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пятиугольники ]
[ Выпуклые многоугольники ]
[ Невыпуклые многоугольники ]
[ Гомотетия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10,11

а) Выпуклый пятиугольник разбили непересекающимися диагоналями на три треугольника. Могут ли точки пересечения медиан этих треугольников лежать на одной прямой?

б) Тот же вопрос для невыпуклого пятиугольника.

Прислать комментарий     Решение

Задача 35200

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Плоскость, разрезанная прямыми ]
[ Пятиугольники ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 7,8,9

Внутри выпуклого пятиугольника расположены две точки. Докажите, что можно выбрать четырехугольник с вершинами в вершинах пятиугольника так, что в него попадут обе выбранные точки.
Прислать комментарий     Решение


Задача 66825

Темы:   [ Логика и теория множеств (прочее) ]
[ Четность и нечетность ]
[ Углы между биссектрисами ]
[ Невыпуклые многоугольники ]
Сложность: 4-
Классы: 8,9,10,11

Дан многоугольник, у которого каждые две соседние стороны перпендикулярны. Назовём две его вершины не дружными, если биссектрисы многоугольника, выходящие из этих вершин, перпендикулярны. Докажите, что для любой вершины количество не дружных с ней вершин чётно.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .