Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 122]
В параллелограмме ABCD точки E и F лежат соответственно на
сторонах AB и BC, M – точка пересечения прямых AF и DE, причём AE = 2BE,
а BF = 3CF. Найдите отношение AM : MF.
Точки P и Q расположены на стороне BC треугольника ABC, причём BP : PQ : QC = 1 : 2 : 3. Точка R делит сторону AC этого треугольника так, что
AR : RC = 1 : 2. Чему равно отношение площади четырёхугольника PQST к площади треугольника ABC, если S и T – точки пересечения прямой BR с прямыми AQ и AP соответственно?
Дана трапеция ABCD. Параллельно её основаниям проведена прямая, пересекающая боковые стороны AB и CD соответственно в точках P и Q, а диагонали AC и BD соответственно в точках L и R. Диагонали AC и BD пересекаются в точке O. Известно, что BC = a, AD = b, а площади треугольников BOC и LOR равны. Найдите PQ, если точка L лежит между точками A и O.
Каждая сторона треугольника разделена на три равные части. Точки деления служат вершинами двух треугольников, пересечение которых – шестиугольник. Найдите площадь этого шестиугольника, если площадь данного треугольника равна S.
В треугольнике ABC точка D делит сторону AB пополам, а точка E лежит на стороне BC, причём отрезок BE в 3 раза меньше стороны BC. Отрезки AE и CD пересекаются в точке O. Найдите AB, если известно, что AE = 5, OC = 4, а ∠AOC = 120°.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 122]