Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 122]
В прямоугольнике ABCD на сторонах AB и AD выбраны соответственно точки E и F так, что AE : EB = 3 : 1, AF : FD = 1 : 2.
Найдите отношение EO : OD, где O – точка пересечения отрезков DE и CF.
Точки M и N находятся на боковых сторонах AB и CD трапеции ABCD, прямая MN параллельна AD, а отрезок MN делится диагоналями трапеции на три равные части. Найдите длину отрезка MN, если AD = a, BC = b, а точка пересечения диагоналей
трапеции лежит внутри четырёхугольника MBCN.
|
|
Сложность: 3+ Классы: 9,10
|
В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что ∠PKA = ∠QKD.
Точка F лежит на продолжении стороны BC параллелограмма ABCD за точку C. Отрезок AF пересекает диагональ BD в точке E, а сторону CD – в точке G. Известно, что AE = 2 и GF = 3. Найдите отношение площадей треугольников BAE и EDG.
В треугольнике ABC на основании AC взяты точки P и Q так, что AP < AQ. Прямые BP и BQ делят медиану AM на три равные части. Известно, что PQ = 3.
Найдите AC.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 122]