Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 122]
Докажите, что если a1 = a2 и b1 = b2 (см. рис.), то x = y.
Точка P лежит внутри треугольника ABC, причём
∠ABP = ∠ACP. На прямых AB и AC взяты такие точки C1 и B1, что BC1 : CB1 = CP : BP. Докажите, что одна из диагоналей параллелограмма, две стороны которого лежат на прямых BP и CP, а две другие стороны (или их продолжения) проходят через B1 и C1, параллельна BC.
Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон.
Доказать, что отношение каждой диагонали к соответствующей стороне равно
В треугольнике ABC взяты точка N на стороне AB, а точка
M – на стороне AC. Отрезки CN и BM пересекаются в точке O, AN : NB = 2 : 3, BO : OM = 5 : 2.
Найдите CO : ON.
На продолжении стороны BC параллелограмма ABCD за точку C
взята точка F. Отрезок AF пересекает диагональ BD в точке E, а сторону CD – в точке G, причём GF = 3, а AE на 1 больше EG. Какую часть площади параллелограмма ABCD составляет площадь треугольника ADE?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 122]