Страница:
<< 7 8 9 10 11 12 13 [Всего задач: 64]
|
|
Сложность: 4+ Классы: 10,11
|
B выпуклом четырёхугольнике ABCD: AC ⊥ BD, ∠BCA = 10°, ∠BDA = 20°, ∠BAC = 40°. Найдите ∠BDC.
|
|
Сложность: 5- Классы: 10,11
|
Трапеция ABCD вписана в окружность w (AD || BC). Окружности, вписанные в треугольники ABC и ABD, касаются оснований трапеции BC и AD в точках P и Q соответственно. Точки X и Y – середины дуг BC и AD окружности w, не содержащих точек A и B соответственно. Докажите, что прямые XP и YQ пересекаются на окружности w.
|
|
Сложность: 5 Классы: 9,10,11
|
Дан лист клетчатой бумаги. Докажите, что при n ≠ 4 не существует правильного n-угольника с вершинами в узлах решетки.
|
|
Сложность: 5+ Классы: 8,9,10,11
|
В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
в) Могут ли длины отрезков равняться 4, 4 и 3?
Страница:
<< 7 8 9 10 11 12 13 [Всего задач: 64]