ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В квадрате 6×6 отмечают несколько клеток так, что из любой отмеченной можно пройти в любую другую отмеченную, переходя только через общие стороны отмеченных клеток. Отмеченную клетку называют концевой, если она граничит по стороне ровно с одной отмеченной. Отметьте несколько клеток так, чтобы получилось   а) 10,  б) 11,  в) 12 концевых клеток.

Вниз   Решение


Футбольный мяч сшит из 32 лоскутков: белых шестиугольников и чёрных пятиугольников. Каждый чёрный лоскут граничит только с белыми, а каждый белый — с тремя чёрными и тремя белыми. Сколько лоскутков белого цвета?

ВверхВниз   Решение


В Мексике экологи добились принятия закона, по которому каждый автомобиль хотя бы один день в неделю не должен ездить (владелец сообщает полиции номер автомобиля и "выходной" день недели этого автомобиля). В некоторой семье все взрослые желают ездить ежедневно (каждый – по своим делам!). Сколько автомобилей (как минимум) должно быть в семье, если взрослых в ней
  а) 5 человек?  б) 8 человек?

ВверхВниз   Решение


Каких прямоугольников с целыми сторонами больше: с периметром 1996 или с периметром 1998?
(Прямоугольники a×b и b×a считаются одинаковыми.)

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 87102

Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Куб ]
Сложность: 3
Классы: 8,9

Дан куб с ребром 1. Докажите, что сумма расстояний от произвольной точки до его вершин не меньше 4 .
Прислать комментарий     Решение


Задача 87103

Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Параллелепипеды ]
Сложность: 3
Классы: 8,9

Пусть a , b и c – стороны параллелепипеда, d – одна из его диагоналей. Докажите, что a2 + b2 + c2 d2 .
Прислать комментарий     Решение


Задача 87104

Темы:   [ Перпендикуляр и наклонная ]
[ Расстояние между скрещивающимися прямыми ]
Сложность: 3
Классы: 8,9

Докажите, что общий перпендикуляр двух скрещивающихся прямых есть наименьшее из расстояний между точками этих прямых.
Прислать комментарий     Решение


Задача 87105

Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8,9

В пространстве рассматриваются два отрезка AB и CD , не лежащие в одной плоскости. Пусть M и K – их середины. Докажите, что MK < (AD + BC) .
Прислать комментарий     Решение


Задача 87106

Темы:   [ Неравенства с площадями ]
[ Боковая поверхность тетраэдра и пирамиды ]
[ Площадь и ортогональная проекция ]
Сложность: 3
Классы: 8,9

Докажите, что площадь любой грани тетраэдра меньше суммы площадей трёх остальных его граней.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .