Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 177]
|
|
Сложность: 4+ Классы: 8,9,10
|
На отрезке [0, 2002] отмечены его концы и n – 1 > 0 целых точек так, что длины отрезков, на которые разбился отрезок [0, 2002], взаимно просты в совокупности. Разрешается разделить любой отрезок с отмеченными концами на n равных частей и отметить точки деления, если они все целые. (Точку можно отметить второй раз, при этом она остаётся отмеченной.) Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?
|
|
Сложность: 4+ Классы: 9,10,11
|
При каком наименьшем $n$ для любого набора $A$ из $2007$ множеств
найдется такой набор $B$ из $n$ множеств,
что каждое множество набора $A$ является
пересечением двух различных множеств набора $B$?
|
|
Сложность: 4+ Классы: 8,9,10
|
На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел a, b, стоящих в соседних по стороне клетках, хотя бы одно из уравнений x² – ax + b = 0 и x² – bx + a = 0 имеет два целых корня?
|
|
Сложность: 4+ Классы: 9,10,11
|
В клетки квадрата 100×100 расставили числа 1, 2, ..., 10000, каждое – по одному разу; при этом числа, различающиеся на 1, записаны в соседних по стороне клетках. После этого посчитали расстояния между центрами каждых двух клеток, числа в которых различаются ровно на 5000. Пусть S – минимальное из этих расстояний. Какое наибольшее значение может принимать S?
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 177]