Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 177]
|
|
Сложность: 4+ Классы: 8,9,10
|
Дана функция f(x), значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен Qp(x) степени, не превышающей 2013, с целыми коэффициентами, что f(n) – Qp(n) делится на p при любом целом n. Верно ли, что существует такой многочлен g(x) с вещественными коэффициентами , что g(n) = f(n) для любого целого n?
|
|
Сложность: 4+ Классы: 8,9,10
|
Выпуклый четырёхугольник ABCD таков, что AB·CD = AD·BC. Докажите, что –∠BAC + ∠CBD + ∠DCA + ∠ADB = 180°.
|
|
Сложность: 4+ Классы: 7,8,9
|
Рациональные числа x, y и z таковы, что все числа x + y² + z², x² + y + z² и x² + y² + z целые. Докажите, что число 2x целое.
|
|
Сложность: 4+ Классы: 10,11
|
Пусть $I$ – центр сферы, вписанной в тетраэдр $ABCD$, а $J$ – центр сферы, касающейся грани $BCD$ и плоскостей остальных граней (вне самих граней). Отрезок $IJ$ пересекает сферу, описанную около тетраэдра, в точке $K$. Что больше: $IK$ или $JK$?
|
|
Сложность: 5- Классы: 9,10,11
|
Вписанная окружность
σ треугольника
ABC касается его сторон
BC ,
AC ,
AB в точках
A' ,
B' ,
C' соответственно. Точки
K и
L на окружности
σ таковы, что
AKB'+ BKA'= ALB'+ BLA'=180
o . Докажите, что прямая
KL равноудалена от точек
A' ,
B' ,
C' .
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 177]