Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 177]
|
|
Сложность: 5- Классы: 8,9,10,11
|
В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
|
|
Сложность: 5- Классы: 9,10,11
|
Существует ли такое натуральное число n > 101000, не делящееся на 10, что в его десятичной записи можно
переставить две различные ненулевые цифры так, чтобы множество его простых
делителей не изменилось?
|
|
Сложность: 5- Классы: 8,9,10,11
|
На оборотных сторонах 2005 карточек написаны различные
числа (на каждой по одному). За один вопрос разрешается указать на любые три
карточки и узнать множество чисел, написанных на них. За какое наименьшее
число вопросов можно узнать, какие числа записаны на каждой карточке?
Даны
N ≥ 3 точек, занумерованных числами 1, 2, ...,
N. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем
однотонной, если нет двух таких точек
A и
B, что от
A до
B можно добраться и по красным стрелкам, и по синим. Найдите количество однотонных раскрасок.
|
|
Сложность: 5- Классы: 9,10,11
|
Существуют ли такие ненулевые числа a, b, c, что при любом n > 3 можно найти многочлен вида Pn(x) = xn + ... + ax² + bx + c, имеющий ровно n (не обязательно различных) целых корней?
Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 177]