ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Богданов И.И.

Илья Игоревич Богданов - доцент Московского физико-технического института, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 177]      



Задача 109797

Темы:   [ Числовые таблицы и их свойства ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Разбиения на пары и группы; биекции ]
[ Арифметическая прогрессия ]
Сложность: 5-
Классы: 8,9,10,11

В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.

Прислать комментарий     Решение

Задача 109807

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 9,10,11

Существует ли такое натуральное число  n > 101000,  не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?

Прислать комментарий     Решение

Задача 109825

Темы:   [ Теория алгоритмов (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Процессы и операции ]
[ Оценка + пример ]
Сложность: 5-
Классы: 8,9,10,11

На оборотных сторонах 2005 карточек написаны различные числа (на каждой по одному). За один вопрос разрешается указать на любые три карточки и узнать множество чисел, написанных на них. За какое наименьшее число вопросов можно узнать, какие числа записаны на каждой карточке?
Прислать комментарий     Решение


Задача 110181

Темы:   [ Раскраски ]
[ Задачи с ограничениями ]
[ Ориентированные графы ]
[ Перестановки и подстановки (прочее) ]
[ Отношение порядка ]
Сложность: 5-

Даны  N ≥ 3  точек, занумерованных числами 1, 2, ..., N. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем однотонной, если нет двух таких точек A и B, что от A до B можно добраться и по красным стрелкам, и по синим. Найдите количество однотонных раскрасок.

Прислать комментарий     Решение

Задача 111831

Темы:   [ Свойства коэффициентов многочлена ]
[ Теорема Виета ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Существуют ли такие ненулевые числа a, b, c, что при любом  n > 3  можно найти многочлен вида  Pn(x) = xn + ... + ax² + bx + c,  имеющий ровно n (не обязательно различных) целых корней?

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 177]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .