ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Богданов И.И.

Илья Игоревич Богданов - доцент Московского физико-технического института, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 177]      



Задача 64768

Темы:   [ Процессы и операции ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 5-
Классы: 8,9,10

В государстве n городов, и между каждыми двумя из них курсирует экспресс (в обе стороны). Для каждого экспресса цены билетов "туда" и "обратно" равны, а для разных экспрессов эти цены различны. Докажите, что путешественник может выбрать начальный город, выехать из него и проехать последовательно на  n – 1  экспрессах, платя за проезд на каждом следующем меньше, чем за проезд на предыдущем. (Путешественник может попадать несколько раз в один и тот же город.)

Прислать комментарий     Решение

Задача 64852

Темы:   [ Целочисленные решетки (прочее) ]
[ Теория алгоритмов ]
Сложность: 5-
Классы: 8,9,10

Паутина имеет вид клетчатой сетки 100×100 узлов (другими словами, это сетка 99×99 клеток). В каком-то её углу сидит паук, а в некоторых 100 узлах к паутине приклеились мухи. За ход паук может переместиться в любой соседний с ним узел. Может ли паук гарантированно съесть всех мух, затратив не более
  а) 2100 ходов;
  б) 2000 ходов?

Прислать комментарий     Решение

Задача 65249

Темы:   [ Взвешивания ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 5-
Классы: 9,10,11

У нумизмата есть 100 одинаковых по внешнему виду монет. Он знает, что среди них 30 настоящих и 70 фальшивых монет. Кроме того, он знает, что массы всех настоящих монет одинаковы, а массы всех фальшивых – разные, причём каждая фальшивая монета тяжелее настоящей; однако точные массы монет неизвестны. Имеются двухчашечные весы без гирь, на которых можно за одно взвешивание сравнить массы двух групп, состоящих из одинакового числа монет. За какое наименьшее количество взвешиваний на этих весах нумизмат сможет гарантированно найти хотя бы одну настоящую монету?

Прислать комментарий     Решение

Задача 66321

Темы:   [ Системы точек ]
[ Четность и нечетность ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 10

На плоскости дано множество S, состоящее из чётного числа точек, никакие три из которых не лежат на одной прямой.
Докажите, что S можно разбить на два множества X и Y так, что выпуклые оболочки  conv X  и  conv Y  имеют поровну вершин.

Прислать комментарий     Решение

Задача 109790

Темы:   [ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
Сложность: 5-
Классы: 9,10,11

Последовательность {an} строится следующим образом:  a1 = p  – простое число, имеющее ровно 300 ненулевых цифр, an+1 – период десятичной дроби 1/an, умноженный на 2. Найдите число a2003.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 177]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .