Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 177]
|
|
Сложность: 5- Классы: 8,9,10
|
В государстве n городов, и между каждыми двумя из них курсирует экспресс (в обе стороны). Для каждого экспресса цены билетов "туда" и "обратно" равны, а для разных экспрессов эти цены различны. Докажите, что путешественник может выбрать начальный город, выехать из него и проехать последовательно на n – 1 экспрессах, платя за проезд на каждом следующем меньше, чем за проезд на предыдущем. (Путешественник может попадать несколько раз в один и тот же город.)
|
|
Сложность: 5- Классы: 8,9,10
|
Паутина имеет вид клетчатой сетки 100×100 узлов (другими словами, это сетка 99×99 клеток). В каком-то её углу сидит паук, а в некоторых 100 узлах к паутине приклеились мухи. За ход паук может переместиться в любой соседний с ним узел. Может ли паук гарантированно съесть всех мух, затратив не более
а) 2100 ходов;
б) 2000 ходов?
|
|
Сложность: 5- Классы: 9,10,11
|
У нумизмата есть 100 одинаковых по внешнему виду монет. Он знает, что среди них 30 настоящих и 70 фальшивых монет. Кроме того, он знает, что массы всех настоящих монет одинаковы, а массы всех фальшивых – разные, причём каждая
фальшивая монета тяжелее настоящей; однако точные массы монет неизвестны. Имеются двухчашечные весы без гирь, на которых можно за одно взвешивание сравнить массы двух групп, состоящих из одинакового числа монет. За какое наименьшее количество взвешиваний на этих весах нумизмат сможет гарантированно найти хотя бы одну настоящую монету?
На плоскости дано множество S, состоящее из чётного числа точек, никакие три из которых не лежат на одной прямой.
Докажите, что S можно разбить на два множества X и Y так, что выпуклые оболочки conv X и conv Y имеют поровну вершин.
|
|
Сложность: 5- Классы: 9,10,11
|
Последовательность {an} строится следующим образом: a1 = p – простое число, имеющее ровно 300 ненулевых цифр, an+1 – период десятичной дроби
1/an, умноженный на 2. Найдите число a2003.
Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 177]