Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 177]
|
|
Сложность: 5 Классы: 10,11
|
Дано целое $n>2$. На сфере радиуса 1 требуется расположить $n$ попарно не пересекающихся дуг больших окружностей, все дуги равной длины $\alpha$.
Докажите, что
а) при любом $\alpha<\pi+\frac{2\pi}n$ это возможно;
б) при любом $\alpha>\pi+\frac{2\pi}n$ это невозможно.
|
|
Сложность: 5 Классы: 10,11
|
Сфера, вписанная в тетраэдр ABCD, касается его граней в точках A', B', C', D'. Отрезки AA' и BB' пересекаются, и точка их пересечения лежит на вписанной сфере. Доказать, что отрезки CC' и DD' тоже пересекаются на вписанной сфере.
|
|
Сложность: 5 Классы: 8,9,10,11
|
На координатной плоскости дан выпуклый пятиугольник
ABCDE с вершинами в целых точках. Докажите, что внутри или на границе
пятиугольника
A1B1C1D1E1 (см. рис.) есть хотя бы одна целая точка.
|
|
Сложность: 5 Классы: 8,9,10
|
На плоскости взято конечное число красных и синих прямых, среди которых нет
параллельных, так, что через каждую точку пересечения одноцветных прямых проходит
прямая другого цвета. Докажите, что все прямые проходят через одну точку.
|
|
Сложность: 5 Классы: 9,10,11
|
Каждая клетка клетчатой плоскости раскрашена в один из
n² цветов так, что в каждом квадрате из
n× клеток встречаются все цвета.
Известно, что в какой-то строке встречаются все цвета. Докажите, что существует столбец, раскрашенный ровно в
n цветов.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 177]