Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 196]
|
|
Сложность: 3+ Классы: 8,9,10
|
Правильный треугольник ABC вписан в окружность. Прямая l, проходящая через середину стороны AB и параллельная AC, пересекает дугу AB, не содержащую C, в точке K. Докажите, что отношение AK : BK равно отношению стороны правильного пятиугольника к его диагонали.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Аналитик сделал прогноз изменения курса доллара на каждый из трёх ближайших месяцев: на сколько процентов (число, большее 0% и меньшее 100%) изменится курс за июль, на сколько – за август, и на сколько – за сентябрь. Оказалось, что про каждый месяц он верно предсказал, на сколько процентов изменится курс, но ошибся с направлением изменения (то есть если он предсказывал, что курс увеличится на $x\%$, то курс падал на $x\%$, и наоборот). При этом через три месяца курс совпал с прогнозом. В какую сторону в итоге изменился курс?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Аналитик сделал прогноз изменения курса доллара на каждый из 12 ближайших месяцев: на сколько процентов (число, большее 0% и меньшее 100%) изменится курс за октябрь, на сколько – за ноябрь, ..., на сколько – за сентябрь. Оказалось, что про каждый месяц он верно предсказал, на сколько процентов изменится курс, но ошибся с направлением изменения (то есть, если он предсказывал, что курс увеличится на $x$%, то курс падал на $x$%, и наоборот). При этом через 12 месяцев курс совпал с прогнозом. В какую сторону в итоге изменился курс?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Три богатыря бьются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает Змею половину всех голов и ещё одну, Добрыня Никитич – треть всех голов и ещё две, Алёша Попович – четверть всех голов и ещё три. Богатыри бьют по одному в каком хотят порядке, отрубая каждым ударом целое число голов.
Если ни один богатырь не может ударить (число голов получается нецелым), Змей съедает всех троих. Смогут ли богатыри отрубить все головы 41!-головому Змею?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В ряд записаны $n > 2$ различных ненулевых чисел, причём каждое следующее больше предыдущего на одну и ту же величину. Обратные к этим $n$ числам тоже удалось записать в ряд (возможно, в другом порядке) так, что каждое следующее больше предыдущего на одну и ту же величину (возможно, иную, чем в первом случае). Чему могло равняться $n$?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 196]