Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 201]
Турнир Городов проводится раз в год. Сейчас год проведения осеннего тура делится на номер турнира: 2021:43 = 47. Сколько ещё раз человечество сможет наблюдать это удивительное явление?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Точка $D$ лежит на основании $AB$ равнобедренного тупоугольного треугольника $ABC$ так, что отрезок $AD$ равен радиусу описанной окружности треугольника $BCD$. Найдите угол $ACD$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Даны окружность $\omega$ с центром $O$ и точка $P$ внутри нее. Пусть $X$ – произвольная точка $\omega$, прямая $XP$ и окружность $XOP$ пересекают $\omega$ во второй раз в точках $X_1$, $X_2$ соответственно. Докажите, что все прямые $X_1X_2$ параллельны друг другу.
|
|
Сложность: 3 Классы: 8,9,10
|
Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.
Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него.
Доказать, что, если ∠BAO = ∠DAC, то диагонали четырёхугольника перпендикулярны.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 201]