ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Прямую палку длиной 2 метра распилили на N палочек, длина каждой из которых выражается целым числом сантиметров. При каком наименьшем N можно гарантировать, что, использовав все получившиеся палочки, можно, не ломая их, сложить контур некоторого прямоугольника? ![]() ![]() Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося? ![]() ![]() ![]() Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества A1, A2, A3, ... так, чтобы при любом натуральном k сумма всех чисел, входящих в подмножество Ak, равнялась k + 2013? ![]() ![]() |
Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 810]
На плоскости синим и красным цветом окрашено несколько точек так, что никакие три точки одного цвета не лежат на одной прямой (точек каждого цвета не меньше трёх). Докажите, что какие-то три точки одного цвета образуют треугольник, на трёх сторонах которого лежит не более двух точек другого цвета.
Какое наибольшее количество непересекающихся диагоналей можно провести в выпуклом n-угольнике (допускаются диагонали, имеющие общую вершину)?
Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1.
Существует ли тетраэдр, высоты которого равны 1, 2, 3 и 6?
Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 810] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |