Страница: 1
2 >> [Всего задач: 8]
Задача
116630
(#9.1)
|
|
Сложность: 3 Классы: 9,10
|
Приведённый квадратный трёхчлен P(x) таков, что многочлены P(x) и P(P(P(x))) имеют общий корень. Докажите, что P(0)P(1) = 0.
Задача
116631
(#9.2)
|
|
Сложность: 4- Классы: 8,9,10
|
Дан остроугольный треугольник ABC. Окружность, проходящая через вершину B и центр O его описанной окружности, вторично пересекает стороны BC и BA в точках P и Q соответственно. Докажите, что ортоцентр треугольника POQ лежит на прямой AC.
Задача
116632
(#9.3)
|
|
Сложность: 4 Классы: 8,9,10
|
На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём
диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?
Задача
116633
(#9.4)
|
|
Сложность: 4+ Классы: 8,9,10
|
Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?
Задача
116634
(#9.5)
|
|
Сложность: 3 Классы: 8,9,10
|
Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.
Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?
Страница: 1
2 >> [Всего задач: 8]