ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В городе 57 автобусных маршрутов. Известно, что: ![]() ![]() Если все 6 граней параллелепипеда — равные между собой параллелограммы, то они суть ромбы. Докажите. ![]() ![]() ![]() Решить систему ![]() ![]() ![]() Докажите, что если треугольник ABC лежит внутри треугольника A'B'C', то rABC < rA'B'C'. ![]() ![]() ![]() Через вершину A равнобедренного треугольника ABC с основанием AC проведена окружность, касающаяся стороны BC в точке M и пересекающая сторону AB в точке N. Докажите, что AN > CM. ![]() ![]() ![]() Сумма длин нескольких векторов на плоскости равна L. Докажите, что из этих векторов можно выбрать некоторое число векторов (может быть, только один) так, что длина их суммы будет не меньше L/ ![]() ![]() |
Страница: 1 2 3 >> [Всего задач: 15]
Решите уравнение:
В трапеции ABCD (AD || BC) из точки Е – середины CD провели перпендикуляр EF к прямой AB. Найдите площадь трапеции, если АВ = 5, EF = 4.
Найдите все пары (p, q) простых чисел, разность пятых степеней которых также является простым числом.
В турнире по волейболу n команд сыграли в один круг (каждая играла с каждой по одному разу, ничьих в волейболе не бывает). Пусть Р – сумма квадратов чисел, задающих количество побед каждой команды, Q – сумма квадратов чисел, задающих количество их поражений. Докажите, что P = Q.
Найдите значение выражения
Страница: 1 2 3 >> [Всего задач: 15] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |