Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]
Задача
65247
(#10.6)
|
|
Сложность: 3+ Классы: 9,10,11
|
Существует ли такая бесконечная последовательность натуральных чисел, что для любого натурального k сумма любых k идущих подряд членов этой последовательности делится на k + 1?
Задача
65255
(#11.6)
|
|
Сложность: 4 Классы: 10,11
|
Действительные числа a, b, c, d, по модулю большие единицы,
удовлетворяют соотношению abc + abd + acd + bcd + a + b + c + d = 0.
Докажите, что
Задача
65252
(#9.6)
|
|
Сложность: 4 Классы: 9,10,11
|
Поле представляет собой клетчатый квадрат 41×41, в одной из клеток которого замаскирован танк. Истребитель за один выстрел обстреливает одну клетку. Если произошло попадание, танк переползает на соседнюю по стороне клетку поля, если нет – остаётся на месте. При этом после выстрела пилот истребителя
не знает, произошло ли попадание. Для уничтожения танка надо попасть в него два раза. Каким наименьшим числом выстрелов можно обойтись для того, чтобы гарантировать, что танк уничтожен?
Задача
65240
(#9.7)
|
|
Сложность: 4- Классы: 9,10,11
|
Остроугольный треугольник ABC (AB < AC) вписан в окружность Ω. Пусть M – точка пересечения его медиан, а AH – высота. Луч MH пересекает Ω в точке A'. Докажите, что описанная окружность треугольника A'HB касается прямой
AB.
Задача
65248
(#10.7)
|
|
Сложность: 4+ Классы: 9,10,11
|
В остроугольном неравнобедренном треугольнике ABC проведены медиана AM и высота AH. На прямых AB и AC отмечены точки Q и P соответственно так, что QM ⊥ AC и PM ⊥ AB. Описанная окружность треугольника PMQ пересекает прямую BC вторично в точке X. Докажите, что BH = CX.
Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]