Страница: 1
2 3 4 5 6 7 >> [Всего задач: 48]
Задача
65741
(#9.1)
|
|
Сложность: 3+ Классы: 8,9
|
У менялы на базаре есть много ковров. Он согласен взамен ковра размера a×b дать либо ковёр размера 1/a×1/b, либо два ковра размеров c×b и a/c×b (при каждом таком обмене число c клиент может выбрать сам). Путешественник рассказал, что изначально у него был один ковёр, стороны которого превосходили 1, а после нескольких таких обменов у него оказался набор ковров, у каждого из которых одна сторона длиннее 1, а другая – короче 1. Не обманывает ли он? (По просьбе клиента меняла готов ковёр размера a×b считать ковром размера b×a.)
Задача
65693
(#9.1)
|
|
Сложность: 3 Классы: 9,10,11
|
Даны квадратные трёхчлены f1(x), f2(x), ..., f100(x) с одинаковыми коэффициентами при x², одинаковыми коэффициентами при x, но различными свободными членами; у каждого из них есть по два корня. У каждого трёхчлена fi(x) выбрали один корень и обозначили его через xi. Какие значения может принимать сумма f2(x1) + f3(x2) + ... + f100(x99) + f1(x100)?
Задача
65693
(#10.1)
|
|
Сложность: 3 Классы: 9,10,11
|
Даны квадратные трёхчлены f1(x), f2(x), ..., f100(x) с одинаковыми коэффициентами при x², одинаковыми коэффициентами при x, но различными свободными членами; у каждого из них есть по два корня. У каждого трёхчлена fi(x) выбрали один корень и обозначили его через xi. Какие значения может принимать сумма f2(x1) + f3(x2) + ... + f100(x99) + f1(x100)?
Задача
65704
(#11.1)
|
|
Сложность: 3+ Классы: 10,11
|
Квадратный трёхчлен f(x) = ax² + bx + c, не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
Может ли дискриминант трёхчлена f(x) быть рациональным?
Задача
65749
(#10.1)
|
|
Сложность: 3+ Классы: 8,9,10
|
В Национальной Баскетбольной Ассоциации 30 команд, каждая из которых проводит за год 82 матча с другими командами в регулярном чемпионате. Сможет ли руководство Ассоциации разделить команды (не обязательно поровну) на Восточную и Западную конференции и составить расписание игр так, чтобы матчи между командами из разных конференций составляли ровно половину от общего числа матчей?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 48]