Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 48]
Задача
65702
(#10.5)
|
|
Сложность: 4- Классы: 9,10,11
|
Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых a + b лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел.
Задача
65702
(#11.5)
|
|
Сложность: 4- Классы: 9,10,11
|
Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых a + b лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел.
Задача
65745
(#9.5)
|
|
Сложность: 3+ Классы: 7,8,9
|
Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составлены девять (не обязательно различных) девятизначных чисел; каждая из цифр использована в каждом числе ровно один раз. На какое наибольшее количество нулей может оканчиваться сумма этих девяти чисел?
Задача
65745
(#10.5)
|
|
Сложность: 3+ Классы: 7,8,9
|
Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составлены девять (не обязательно различных) девятизначных чисел; каждая из цифр использована в каждом числе ровно один раз. На какое наибольшее количество нулей может оканчиваться сумма этих девяти чисел?
Задача
65761
(#11.5)
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть n – натуральное число. На 2n + 1 карточках написано по ненулевому целому числу; сумма всех чисел также ненулевая. Требуется этими карточками заменить звёздочки в выражении *x2n + *x2n–1 + ... *x + * так, чтобы полученный многочлен не имел целых корней. Всегда ли это можно сделать?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 48]