ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 363]      



Задача 67273

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 5,6,7,8

Назовём натуральное число $n$ интересным, если $n$ и $n+2023$ – палиндромы, то есть числа, одинаково читающееся слева направо и справа налево. Найдите наименьшее и наибольшее интересные числа.
Прислать комментарий     Решение


Задача 66623

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площади криволинейных фигур ]
Сложность: 3
Классы: 9,10,11

Требуется разделить криволинейный треугольник на рисунке на 2 части одинаковой площади, проведя одну линию циркулем. Это можно сделать, выбрав в качестве центра одну из отмеченных точек и проводя дугу через другую отмеченную точку. Найдите способ это сделать и докажите, что он подходит.

Прислать комментарий     Решение

Задача 66624

Темы:   [ Задачи на проценты и отношения ]
[ Последовательности ]
Сложность: 3
Классы: 9,10,11

Акции фирмы “Рога и копыта” каждый день меняют свою стоимость: поочерёдно то дорожают в $a$ раз, то дешевеют на $b$ рублей. Их стоимость уже трижды была равна $N$ рублей. Докажите, что рано или поздно она примет это значение и в четвёртый раз.
Прислать комментарий     Решение


Задача 66766

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9,10,11

Найдите трехзначное число, которое представимо в виде суммы и двух, и трех, и четырех, и пяти, и шести квадратов различных натуральных чисел. Достаточно привести один пример.
Прислать комментарий     Решение


Задача 116368

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Внутри забора, представляющего собой замкнутую несамопересекающуюся ломаную, заперт тигр. На рисунке видна только часть забора (положение тигра показано крестиком). Нарисуйте, как мог бы выглядеть весь забор (забор может идти только по линиям сетки).

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .