Страница:
<< 109 110 111 112
113 114 115 >> [Всего задач: 1703]
|
|
Сложность: 3+ Классы: 7,8,9
|
Двое играют на шахматной доске 8×8. Начинающий игру делает первый ход – ставит на доску коня. Затем они по очереди его передвигают (по обычным правилам), при этом нельзя ставить коня на поле, где он уже побывал. Проигравшим считается тот, кому некуда ходить. Кто выигрывает при правильной игре – начинающий или его партнёр?
|
|
Сложность: 3+ Классы: 8,9,10
|
Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом
увеличении разность между новым и старым значениями числа была бы больше нуля,
но меньше старого значения. Начальное значение числа равно 2. Выигравшим
считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?
Доказать, что существует бесконечно много таких пар (a, b) натуральных чисел, что a² + 1 делится на b, а b² + 1 делится на a.
Рассматриваются всевозможные пары (a, b) натуральных чисел, где a < b. Некоторые пары объявляются чёрными, остальные – белыми.
Можно ли это сделать так, чтобы для любых натуральных a и d среди пар (a, a + d), (a, a + 2d), (a + d, a + 2d) встречались и чёрные, и белые?
|
|
Сложность: 3+ Классы: 7,8,9
|
Правильный треугольник разбит прямыми, параллельными его сторонам, на равные
между собой правильные треугольники. Один из маленьких треугольников чёрный,
остальные – белые. Разрешается перекрашивать одновременно все треугольники,
пересекаемые прямой, параллельной любой стороне исходного треугольника. Всегда ли можно с помощью нескольких таких перекрашиваний добиться того, чтобы все маленькие треугольники стали белыми?
Страница:
<< 109 110 111 112
113 114 115 >> [Всего задач: 1703]