ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC  ( AB < BC)  точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Докажите, что  ∠IMA = ∠INB.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 110186  (#05.4.9.3)

Темы:   [ Свойства разверток ]
[ Симметричная стратегия ]
[ Куб ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 9,10,11

Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?
Прислать комментарий     Решение


Задача 110187  (#05.4.9.4)

Темы:   [ Биссектриса делит дугу пополам ]
[ Вписанные и описанные окружности ]
[ Диаметр, основные свойства ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10

В треугольнике ABC  ( AB < BC)  точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Докажите, что  ∠IMA = ∠INB.

Прислать комментарий     Решение

Задача 110195  (#05.4.9.5)

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

Известно, что сумма цифр натурального числа N равна 100, а сумма цифр числа 5N равна 50. Докажите, что N чётно.

Прислать комментарий     Решение

Задача 110188  (#05.4.9.6)

Темы:   [ Свойства симметрий и осей симметрии ]
[ Трапеции (прочее) ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Докажите, что если получившиеся точки образуют четырёхугольник, то он также является трапецией.

Прислать комментарий     Решение

Задача 110189  (#05.4.9.7)

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 9,10

Существует ли такая бесконечная возрастающая арифметическая прогрессия {an} из натуральных чисел, что произведение an...an+9 делится на сумму
an +... + an+9  при любом натуральном n?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .