Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 64]
Задача
111847
(#07.5.9.6)
|
|
Сложность: 4 Классы: 9,10
|
Дан остроугольный треугольник ABC. Точки M и N – середины сторон AB и BC соответственно, точка H – основание высоты, опущенной из вершины B. Описанные окружности треугольников AHN и CHM пересекаются в точке P (P ≠ H). Докажите, что прямая PH проходит через середину отрезка MN.
Задача
111857
(#07.5.9.7)
|
|
Сложность: 4- Классы: 8,9,10
|
В квадрате 10×10 расставлены числа от 1 до 100: в первой строчке – от 1 до 10 слева направо, во второй – от 11 до 20 слева направо и т.д. Андрей собирается разрезать квадрат на доминошки 1×2, посчитать произведение чисел в каждой доминошке и сложить полученные 50 чисел. Он стремится получить как можно меньшую сумму. Как ему следует разрезать квадрат?
Задача
111849
(#07.5.9.8)
|
|
Сложность: 5 Классы: 9
|
Дима посчитал факториалы всех натуральных чисел от80 до 99, нашел числа,
обратные к ним, и напечатал получившиеся десятичные дроби на 20 бесконечных
ленточках (например, на последней ленточке было напечатано число
=0
, 10715
.. ).
Саша хочет вырезать из одной ленточки кусок, на котором записано
N цифр подряд и нет запятой. При каком наибольшем
N
он сможет это сделать так, чтобы Дима не смог определить по этому куску, какую ленточку испортил Саша?
Задача
111834
(#07.5.10.1)
|
|
Сложность: 4- Классы: 8,9,10
|
Грани куба 9×9×9 разбиты на единичные клетки. Куб оклеен без наложений бумажными полосками 2×1 (стороны полосок идут по сторонам клеток).
Докажите, что число согнутых полосок нечётно.
Задача
111835
(#07.5.10.2)
|
|
Сложность: 4- Классы: 9,10,11
|
Дан многочлен P(x) = a0xn + a1xn–1 + ... + an–1x + an. Положим m = min {a0, a0 + a1, ..., a0 + a1 + ... + an}.
Докажите, что P(x) ≥ mxn при x ≥ 1.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 64]