ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существуют ли числа такие p и q, что уравнения x² + (p – 1)x + q = 0 и x² + (p + 1)x + q = 0 имеют по два различных корня, а уравнение ![]() ![]() Окружность проходит через вершины B и C треугольника ABC и пересекает стороны AB и AC в точках D и E соответственно. Отрезки CD и BE пересекаются в точке O. Пусть M и N – центры окружностей, вписанных соответственно в треугольники ADE и ODE. Докажите, что середина меньшей дуги DE лежат на прямой MN. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
В 25 коробках лежат шарики нескольких цветов. Известно, что при любом k (1 ≤ k ≤ 25) в любых k коробках лежат шарики ровно k + 1 различных цветов. Докажите, что шарики одного из цветов лежат во всех коробках.
Для вещественных x > y > 0 и натуральных n > k докажите неравенство (xk – yk)n < (xn – yn)k.
Окружность проходит через вершины B и C треугольника ABC и пересекает стороны AB и AC в точках D и E соответственно. Отрезки CD и BE пересекаются в точке O. Пусть M и N – центры окружностей, вписанных соответственно в треугольники ADE и ODE. Докажите, что середина меньшей дуги DE лежат на прямой MN.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |