ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116630  (#9.1)

Тема:   [ Квадратный трехчлен (прочее) ]
Сложность: 3
Классы: 9,10

Автор: Храбров А.

Приведённый квадратный трёхчлен P(x) таков, что многочлены P(x) и P(P(P(x))) имеют общий корень. Докажите, что  P(0)P(1) = 0.

Прислать комментарий     Решение

Задача 116631  (#9.2)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10

Дан остроугольный треугольник ABC. Окружность, проходящая через вершину B и центр O его описанной окружности, вторично пересекает стороны BC и BA в точках P и Q соответственно. Докажите, что ортоцентр треугольника POQ лежит на прямой AC.

Прислать комментарий     Решение

Задача 116632  (#9.3)

Темы:   [ Выпуклые многоугольники ]
[ Системы точек и отрезков (прочее) ]
[ Индукция в геометрии ]
[ Подсчет двумя способами ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 4
Классы: 8,9,10

На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?

Прислать комментарий     Решение

Задача 116633  (#9.4)

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?

Прислать комментарий     Решение

Задача 116634  (#9.5)

Темы:   [ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9,10

Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.
Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .