ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Турниры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В числе не меньше 10 разрядов, в его записи используются только две разные цифры, причём одинаковые цифры не стоят рядом. ![]() ![]() Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны. ![]() ![]() |
Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 1703]
Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Дана клетчатая полоска из 2n клеток, пронумерованных слева направо следующим образом: 1, 2, 3, ..., n, –n, ..., –2, –1 По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число 2n + 1 простое.
Пусть C(n) – количество различных простых делителей числа n. (Например, C(10) = 2, C(11) = 1, C(12) = 2.)
В числе не меньше 10 разрядов, в его записи используются только две разные цифры, причём одинаковые цифры не стоят рядом.
Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что MK = KN.
Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 1703] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |