ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
год/номер:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В каждой клетке клетчатого квадрата 7×7 стоит по числу. Сумма чисел в каждом квадратике 2×2 и 3×3 равна 0. ![]() |
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 363]
Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов: Могло ли такое быть?
В каждой клетке клетчатого квадрата 7×7 стоит по числу. Сумма чисел в каждом квадратике 2×2 и 3×3 равна 0.
Верно ли, что в вершинах любого треугольника можно расставить положительные числа так, чтобы сумма чисел в концах каждой стороны треугольника равнялась длине этой стороны?
На центральном телеграфе стоят разменные автоматы, которые меняют 20 коп. на 15, 2, 2 и 1; 15 коп. на 10, 2, 2 и 1; 10 коп. на 3, 3, 2 и 2. Петя разменял 1 руб. 25 коп. серебром на медь. Вася, посмотрев на результат, сказал: "Я точно знаю, какие у тебя были монеты" и назвал их. Назовите и вы.
А верно ли аналогичное утверждение для находящегося внутри сферы а) произвольного куба; б) произвольного правильного тетраэдра? (Каждое ребро продлевают в обе стороны до пересечения со сферой. В итоге к каждому ребру добавляется по отрезку с обеих сторон. Требуется покрасить каждый из них либо в красный, либо в синий цвет, чтобы сумма длин красных отрезков была равна сумме длин синих.)
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 363] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |