ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Прямую палку длиной 2 метра распилили на N палочек, длина каждой из которых выражается целым числом сантиметров. При каком наименьшем N можно гарантировать, что, использовав все получившиеся палочки, можно, не ломая их, сложить контур некоторого прямоугольника?

Вниз   Решение


Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?

ВверхВниз   Решение


Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества  A1, A2, A3, ...  так, чтобы при любом натуральном k сумма всех чисел, входящих в подмножество Ak, равнялась  k + 2013?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 116940  (#10.2)

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9,10

В остроугольном треугольнике ABC проведены высоты AA1 и CC1. Описанная окружность Ω треугольника ABC пересекает прямую A1C1 в точках A' и C'. Касательные к Ω, проведённые в точках A' и C', пересекаются в точке B'. Докажите, что прямая BB' проходит через центр окружности Ω.

Прислать комментарий     Решение

Задача 116941  (#10.3)

Темы:   [ Исследование квадратного трехчлена ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Даны три квадратных трёхчлена P(x), Q(x) и R(x) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена R(x) в многочлен  P(x) + Q(x)  получаются равные значения. Аналогично при подстановке корней трёхчлена P(x) в многочлен  Q(x) + R(x)  получаются равные значения, а также при подстановке корней трёхчлена Q(x) в многочлен  P(x) + R(x)  получаются равные значения. Докажите, что три числа: сумма корней трёхчлена P(x), сумма корней трёхчлена Q(x) и сумма корней трёхчлена R(x) равны между собой.

Прислать комментарий     Решение

Задача 116948  (#11.2)

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10

P(x) и Q(x) – приведённые квадратные трёхчлены, имеющие по два различных корня. Оказалось, что сумма двух чисел, получаемых при подстановке корней трёхчлена P(x) в трёхчлен Q(x), равна сумме двух чисел, получаемых при подстановке корней трёхчлена Q(x) в трёхчлен P(x). Докажите, что дискриминанты трёхчленов P(x) и Q(x) равны.

Прислать комментарий     Решение

Задача 116942  (#11.3)

Темы:   [ Теория множеств (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества  A1, A2, A3, ...  так, чтобы при любом натуральном k сумма всех чисел, входящих в подмножество Ak, равнялась  k + 2013?

Прислать комментарий     Решение

Задача 116934  (#9.4)

Тема:   [ Свойства модуля. Неравенство треугольника ]
Сложность: 3
Классы: 8,9,10

По кругу выписаны 1000 чисел. Петя вычислил модули разностей соседних чисел, Вася – модули разностей чисел, стоящих через одно, а Толя – модули разностей чисел, стоящих через два. Известно, что каждое Петино число больше любого Васиного хотя бы вдвое. Докажите, что каждое Толино число не меньше любого Васиного.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .