ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Три попарно непересекающиеся окружности ωx, ωy, ωz радиусов rx, ry, rz лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y – середина отрезка XZ,  rx = rz = r,  а  ry > r.  Пусть p – одна из общих внутренних касательных к окружностям ωx и ωy, а q – одна из общих внутренних касательных к окружностям ωy и ωz. В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус его вписанной окружности равен r.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 116936  (#9.6)

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 8,9,10

30 девочек – 13 в красных платьях и 17 в синих платьях – водили хоровод вокруг новогодней ёлки. Впоследствии каждую из них спросили, была ли её соседка справа в синем платье. Оказалось, что правильно ответили те и только те девочки, которые стояли между девочками в платьях одного цвета. Сколько девочек могли ответить утвердительно?

Прислать комментарий     Решение

Задача 116944  (#10.6)

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Натуральные числа a, b и c, где c ≥ 2, таковы, что  1/a + 1/b = 1/c.  Докажите, что хотя бы одно из чисел  a + c,  b + c – составное.

Прислать комментарий     Решение

Задача 116952  (#11.6)

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Общая касательная к двум окружностям ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Три попарно непересекающиеся окружности ωx, ωy, ωz радиусов rx, ry, rz лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y – середина отрезка XZ,  rx = rz = r,  а  ry > r.  Пусть p – одна из общих внутренних касательных к окружностям ωx и ωy, а q – одна из общих внутренних касательных к окружностям ωy и ωz. В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус его вписанной окружности равен r.

Прислать комментарий     Решение

Задача 116937  (#9.7)

Темы:   [ Вписанные и описанные окружности ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

Серединный перпендикуляр к стороне AC неравнобедренного остроугольного треугольника ABC пересекает прямые AB и BC в точках B1 и B2 соответственно, а серединный перпендикуляр к стороне AB пересекает прямые AC и BC в точках C1 и C2 соответственно. Описанные окружности треугольников BB1B2 и CC1C2 пересекаются в точках P и Q. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PQ.

Прислать комментарий     Решение

Задача 116945  (#10.7)

Темы:   [ Общая касательная к двум окружностям ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вневписанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

К двум непересекающимся окружностям ω1 и ω2 проведены три общие касательные – две внешние, a и b, и одна внутренняя, c. Прямые a, b и c касаются окружности ω1 в точках A1, B1 и C1 соответственно, а окружности ω2 – в точках A2, B2 и C2 соответственно. Докажите, что отношение площадей треугольников A1B1C1 и A2B2C2 равно отношению радиусов окружностей ω1 и ω2.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .