ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке EAD — биссектриса треугольника ABC. Докажите, что AE = ED.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 104]      



Задача 56561  (#02.020)

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 4
Классы: 8

В окружность вписаны треугольники T1 и T2, причем вершины треугольника T2 являются серединами дуг, на которые окружность разбивается вершинами треугольника T1. Докажите, что в шестиугольнике, являющемся пересечением треугольников T1 и T2, диагонали, соединяющие противоположные вершины, параллельны сторонам треугольника T1 и пересекаются в одной точке.
Прислать комментарий     Решение


Задача 56562  (#02.021)

Тема:   [ Угол между касательной и хордой ]
Сложность: 2
Классы: 8

Две окружности пересекаются в точках P и Q. Через точку A первой окружности проведены прямые AP и AQ, пересекающие вторую окружность в точках B и C. Докажите, что касательная в точке A к первой окружности параллельна прямой BC.
Прислать комментарий     Решение


Задача 56563  (#02.022)

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Окружности S1 и S2 пересекаются в точках A и P. Через точку A проведена касательная AB к окружности S1, а через точку P — прямая CD, параллельная AB (точки B и C лежат на S2, точка D — на S1). Докажите, что ABCD — параллелограмм.
Прислать комментарий     Решение


Задача 56564  (#02.022.1)

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Окружности S1 и S2 пересекаются в точках A и B. Через точку A проведена касательная AQ к окружности S1 (точка Q лежит на S2), а через точку B -- касательная BS к окружности S2 (точка S лежит на S1). Прямые BQ и AS пересекают окружности S1 и S2 в точках R и P. Докажите, что PQRS — параллелограмм.
Прислать комментарий     Решение


Задача 56565  (#02.023)

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке EAD — биссектриса треугольника ABC. Докажите, что AE = ED.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 104]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .